Estado de Nova York P12 Normas de aprendizaxe básicas comúns para as matemáticas
Contido:
- Recomendado
- Recursos descargables
- Ideas de adaptación
- Recursos
- Discusión Spark, perseveranza e comprensión das matemáticas
- Máis recursos
- Ten sentido de problemas e perseverar en resolvelos
- Motivo de xeito abstracto e cuantitativo
- Construír argumentos viables e criticar o razoamento dos outros
- Modelo con matemáticas
- Usar ferramentas axeitadas estratéxicamente
- Atender a precisión
- Buscar e facer uso da estrutura
- Buscar e expresar regularidade en razonamiento repetido
SlideShare usa cookies para mellorar a funcionalidade e o rendemento e proporcionarlle publicidade relevante. Se continúa navegando polo sitio, acepta o uso de cookies neste sitio web. Vexa o noso acordo de usuario e a política de privacidade.
Recomendado
Os principais principios de deseño dos estándares de aprendizaxe fundamental común de Nova York (CCL) para os estándares de matemáticas son enfocados, coherencia e rigor. Estes principios requiren que, en cada nivel de grao, os alumnos e os profesores centran o seu tempo e enerxía en menos temas, a fin de formar comprensións máis profundas, gañar unha maior habilidade e fluidez e aplicar máis robusto o que se aprende. O foco no currículo está destinado a darlle aos alumnos unha oportunidade para comprender conceptos e practicar con eles para chegar a unha comprensión profunda e fluente. A coherencia no currículo significa progresións que abarcan niveis de grao para construír a comprensión dos alumnos de conceptos e aplicacións matemáticas cada vez máis sofisticadas. O rigor significa unha combinación de exercicios de fluidez, cadeas de razoamento, actividades abstractas e actividades contextuais en todo o módulo.
Recursos descargables
A guía de recursos de profesores de Math People está deseñada para profesores de matemáticas en Columbia Británica. Foi desenvolvido polo primeiro Comité de Dirección de Educación (FNESC), apoiado polo Ministerio de Educación BC e está baseado na vista de que o aumento do éxito do alumno pódese conseguir a través de axustes en pedagoxía e enfoque que fan que as matemáticas se senten máis inclusivas e atractivas .. O desenvolvemento deste recurso foi guiado polo recoñecemento de que
A revisión 2020 deste documento tamén soporta a implementación das chamadas á acción da Comisión de Verdade e Reconciliación, específicamente a chamada a "Integrar o coñecemento indíxena e os métodos de ensino en aulas" (cláusula 62) e "Construír estudante Capacidade de comprensión intercultural, empatía e respecto mutuo "(cláusula 63).
Ideas de adaptación
Consulte Guías, Unidades, Leccións e Actividades de FNNSA e actividades para contextos de aprendizaxe mixtos ou remotos (decembro 2020) para as ideas de adaptación relacionadas con esta publicación. Esta guía está deseñada para identificar as unidades, leccións e / ou actividades dentro das guías de recursos de profesores de FNNSC / FNSA que poden ser máis adaptados para situacións de aprendizaxe remota ou mesturada.
Recursos
O ambiente construído1 Condicións do círculo Dominio2 Circle Dwelling Proxecto Instrucións3 Geometría Teoremas4 Probabilidade de salmón Xogo5 Modelo para o lado do lado6 Circle Dwelling Plan Avaliación Master7 Circle Unit Responder Key
Discusión Spark, perseveranza e comprensión das matemáticas
IM Math é un currículo básico baseado en problemas deseñado para abordar contido e practicar os estándares para fomentar a aprendizaxe para todos. Os alumnos aprenden facendo matemáticas, resolvendo problemas en contextos matemáticos e do mundo real e construíndo argumentos usando un idioma preciso. Os profesores poden cambiar a súa instrución e facilitar a aprendizaxe dos estudantes con rutinas de alta dificultade para guiar aos alumnos a comprender e facer conexións entre conceptos e procedementos.
Deseñado baixo o liderado de William McCallum, un escritor principal do núcleo común, todos os currículos de IM están totalmente aliñados co rigor e coherencia dos estándares. O noso obxectivo é proporcionar a todos os alumnos as habilidades que precisan saber, usar e gozar das matemáticas.
Nun currículo baseado en problemas, os alumnos traballan con problemas de matemáticas coidadosamente elaborados e secuenciados durante a maior parte do tempo de instrución. Os profesores axudan aos alumnos a comprender os problemas e as discusións de guía para asegurarse de que os takeaways matemáticos son claros para todos. No proceso, os alumnos explican as súas ideas e razoamento e aprenden a comunicar ideas matemáticas. O obxectivo é dar aos alumnos a suficientes antecedentes e ferramentas para resolver problemas iniciais con éxito e, a continuación, axúdalles a problemas cada vez máis sofisticados a medida que aumenta a súa experiencia.
A matemática non é un deporte espectador. O valor dun enfoque baseado en problemas é que os alumnos pasan a maior parte do seu tempo en clase de matemáticas facendo matemáticas: ten sentido de problemas, estimar, probar diferentes enfoques, seleccionar e utilizar ferramentas axeitadas e avaliar a razoabilidade das súas respostas. Continúan a interpretar a importancia das súas respostas, notando patróns e facer xeneralizacións, explicando o seu razoamento verbalmente e por escrito, escoitando o razonamiento dos demais e construíndo a súa comprensión.
Matemáticas ilustrativas, autores, revisadas e aprobadas Todos os contidos contidos en Recursos Abrese 6-8 Math 2.. NOSA 6-8 Math 2. é un currículo de alta calidade, e ilustrativa matemática é orgulloso da súa colaboración coa abrir os recursos, o que trouxo un dos primeiros curso completo Oer ensino medio currículo de matemáticas para alumnos e profesores de todo o país. Póñase en contacto co noso para obter máis información sobre a súa versión dun currículo de autoría IM.
A aprendizaxe profesional certificada IM está deseñada para estar profundamente integrada co currículo. O programa ofrece profesores e líderes a soporte a longo prazo e sostible para mellorar a instrución e a aprendizaxe.
Máis recursos
Os estándares comúns de prácticas matemáticas de núcleo son a base do pensamento matemático e a práctica para os alumnos, así como a orientación que axuda aos profesores a modificar as súas aulas para achegarse ao ensino dun xeito que desenvolva unha comprensión matemática máis avanzada. Pense nestes estándares como unha guía para crear unha experiencia de aprendizaxe máis complexa e absorbente que se pode aplicar á vida cotiá, en lugar de quedar na aula.
Ten sentido de problemas e perseverar en resolvelos
O primeiro nivel común de prácticas matemáticas do núcleo atópase en case todos os problemas de matemáticas a través do taboleiro. Significa que os alumnos deben comprender o problema, descubrir como resolvelo e despois traballar ata que finalice. Os estándares fundamentais comúns animan aos alumnos a traballar co seu banco de coñecemento actual e apliquen as habilidades que xa teñen ao mesmo tempo que se evalúen na resolución de problemas. Este estándar é facilmente probado usando problemas cun nivel de habilidade máis dura do que xa domina. Mentres os estudantes traballan a través de problemas máis difíciles, céntranse no proceso de resolución do problema en lugar de chegar á resposta correcta.
Motivo de xeito abstracto e cuantitativo
Ao tentar resolver problemas, é importante que os alumnos entendan que hai varias formas de separar o problema para atopar a solución. Usar símbolos, imaxes ou outras representacións para describir as diferentes seccións do problema permitirá aos alumnos utilizar habilidades de contexto en lugar de algoritmos estándar.
Construír argumentos viables e criticar o razoamento dos outros
Este estándar está destinado a crear unha linguaxe matemática común que se poida usar para discutir e explicar matemáticas e soporte ou obxecto de traballo dos demais. O vocabulario matemático está facilmente integrado en plans de lección diaria para que os alumnos poidan comunicarse de forma eficaz. Os "movementos de conversa" son importantes no desenvolvemento e construción de habilidades de comunicación e poden incluír tarefas tan sinxelas como a razonamiento dun compañeiro de compañeiro ou incluso apoiar o seu propio motivo de acordo ou en desacordo. Ao solicitar que os alumnos participen máis na discusión matemática de clase axudarán a construír habilidades de comunicación dos estudantes.
Modelo con matemáticas
A matemática non termina na porta da aula. Aprender a modelar con matemáticas significa que os alumnos utilizarán habilidades matemáticas para resolver as situacións do mundo real. Isto pode variar dende organizar diferentes tipos de datos ao uso de matemáticas para axudar a comprender as conexións de vida. Usando situacións do mundo real para mostrar como a matemática pode usarse en moitos aspectos diferentes da vida axuda ás matemáticas a ser relevantes fóra da clase matemática.
Usar ferramentas axeitadas estratéxicamente
Un dos principais compoñentes comúns do núcleo é proporcionar aos alumnos os bens que necesitan para navegar polo mundo real. Para que os alumnos aprendan cales son as ferramentas que se deben empregar na resolución de problemas, é importante lembrar que ninguén estará guiando aos estudantes a través do mundo real, dicindo que a ferramenta de matemática a empregar. Deixando o problema aberto rematado, os alumnos poden seleccionar as ferramentas matemáticas para usar e discutir o que funcionou e que non o fixo.
Atender a precisión
Math, como outras materias, implica precisión e respostas exactas. Ao falar e resolver problemas en matemáticas, exactamente e atención ao detalle é importante porque unha resposta incorrecta ou inexacta en matemáticas pode traducirse para afectar unha maior resolución de problemas no mundo real. A importancia neste paso entra no falante comportamento dos estudantes para explicar o que se entende e que non é. Isto é confuso para min.
Buscar e facer uso da estrutura
Cando os alumnos poden identificar diferentes estratexias para a resolución de problemas, poden usar moitas habilidades diferentes para determinar a resposta. A identificación de patróns similares en matemáticas pode usarse para resolver problemas que están fóra da súa zona de confort de aprendizaxe. O razoamento repetido axuda a traer estrutura a problemas máis complexos que poidan ser capaces de ser resoltos usando varias ferramentas cando o problema se divide en partes separadas.
Buscar e expresar regularidade en razonamiento repetido
En matemáticas, é fácil esquecer a gran imaxe mentres traballa nos detalles do problema. Para que os alumnos entendan como se pode aplicar un problema a outros problemas, deberían traballar na aplicación do seu razoamento matemático a varias situacións e problemas. Se un estudante pode resolver un problema como se ensinou, é importante que tamén poidan transmitir esa técnica de resolución de problemas a outros problemas.
Profesores! TeachsterstEP. OM foi líder en cursos de desenvolvemento e recertificación profesionais de K-12 por máis de 20 anos. En colaboración con Carolina South Carolina ETV e Converse College, os nosos cursos en liña son auto-ritmo, aliñados núcleos comúns e ofrecen crédito de graduación a un colexio acreditado. O máis importante, están deseñados por profesores para profesores, incluíndo plans de lección que pode usar hoxe! Tome o seguinte paso. TeachsterstEP. om!